

REVOLUTIONIZE YOUR DRUG DISCOVERY

WWW.HELIGENICS.COM

About Us

➤ Heligenics' proven breakthroughs in biotechnology power our GigaAssayTM to deliver high-quality biologic leads – at accelerated 4x speed!

➤ Our GigaAssay generates a MEGA-MAPTM activity and variant landscape

> Outpace the competition – Heligenics supercharges biologics discovery that is scalable at a significantly lower cost

Tackling Leukemia: A Massive Opportunity

≥21,000 new people are diagnosed annually in the US alone with Acute Myeloid Leukemia (AML), with a mortality of >11,000 per year

- >Current clinical approaches and their limitations
 - Today's treatment landscape includes chemotherapy, targeted therapies, and CAR-T but unmet needs remain
 - Current IFN-α, a treatment molecule, cures AML in mice but is cytotoxic, unstable, and immunogenic – limiting its effectiveness over time
- \triangleright Challenges in new IFN- α drug development
 - High costs and long timelines limit pre-clinical development
 - Slow, tedious methods are choking innovation and stalling lead discovery

IFN-α Solution Biobetter for Leukemia

GigaAssay: proprietary technology that drives market-shifting cost savings.

- > 4X faster
- ▶ 90%+ success in validation of lead¹ generation

Market Opportunity	Heligenics Solutions	
Increase potency	Rapidly pinpoint potent IFN- α variants from 100k+ leads to reduce dosing and side effects	
Improved stability	Discover stable leads that reduce dosing – no guesswork	
Reduced immunogenicity	Engineered for immune stealth – maximize efficacy over time	
Oral forms	Unlock oral delivery with innovative molecular tweaks and natural modifications	
Customized biologics	MEGA-Map landscapes reveal full variant activity 4x faster than conventional single-track technology	

Our GigaAssay Technology for Discovery of Next-Generation IFN- α Drug Leads

Our patented GigaAssay leverages Heligenics' technology to rapidly screen >100k IFNI- α variants for precise, highly impactful results

- > Breakthrough efficiency: lower costs, faster launch
- > Discovery and lead verification 4x faster than conventional methods
 - Less than one year with GigaAssay vs US average of 4.5 years
 - Rapid asset validation: A single GigaAssay will deliver up to 50 actionable leads in <1 year
- > Tailored assays drive 90%+ projected clinical trial success
- GigaAssay accelerates lead validation with vast libraries and MEGA-Map landscapes

How? – With the GigaAssay 100k's of leads tested in human cells - simultaneously

>100k different IFN- α leads simultaneously

Cell-based GigaAssay measures bioactivity

Visualize GigaAssay data output for bioactivity

Purify, verify, patent leads for clinical testing

Targeting IFN-α to Leukemia (GigaAssay Phase II)

- \succ Combine next-generation IFN- α with a targeting protein (scFv) to attack the source of the leukemia
- Reduces off-target side effects limiting systemic toxicity

Dr. Martin Schiller mschiller@heligenics.com

Heligenics Inc.
10530 Discovery Drive
Las Vegas, NV 89135
www.heligenics.com

Appendix

Key Surface Markers on AML Myeloblasts		
Marker	Function / Notes	Therapeutic Targeting
CD33	Highly expressed on most AML blasts	Target of gemtuzumab ozogamicin (Mylotarg, an antibody-drug conjugate)
CD123 (IL-3 receptor α chain)	Overexpressed on AML blasts and leukemic stem cells (LSCs)	Targeted in clinical trials (e.g., tagraxofusp, CD123 CAR-T, bispecifics)
CD34	Marker of stem/progenitor cells, including LSCs	Used for diagnosis/prognosis; less ideal for therapy due to expression on normal HSCs
CD117 (c-Kit)	Tyrosine kinase receptor on some AML subtypes	KIT inhibitors under investigation
CD38	Variable expression	Targeted in some AML studies (e.g., with daratumumab)
CLL-1 (CLEC12A)	Expressed on AML cells and LSCs but not on normal HSCs	Promising therapeutic target (CAR-T, bispecifics)
FLT3	Mutated in ~30% of AML; expressed on blasts	Targeted by midostaurin, gilteritinib (TKIs)
TIM-3, CD47, CD70	Immune checkpoint or immune evasion markers	Targeted by emerging immunotherapies

- Ehninger, A. et al. (2014) "Targeting CD33 with chimeric antigen receptor T cells for the treatment of acute myeloid leukemia." Haematologica, 99(8), 1304–1312.
- Sarfati, M. et al. (2023) "CD123 as a biomarker and therapeutic target in hematologic malignancies: recent advances and future directions." Biomarker Research, 11(1).
- Laborda, E. et al. (2017) "Development of a chimeric antigen receptor targeting CLL-1 for human acute myeloid leukemia." Journal of Hematology & Oncology, 10, 105.
- Lv, J. et al. (2021) "Recent advances in the development of anti-CD123 antibody-drug conjugates for hematologic malignancies." Frontiers in Oncology, 11, 662460.
- Lohmueller, J.J. et al. (2020) "Chimeric antigen receptor T cells for treatment of AML: progress and challenges." Frontiers in Oncology, 10, 610009.
- Hanekamp, D. et al. (2017) "The leukemia stem cell marker CD123 in AML: expression and therapeutic targeting." Frontiers in Oncology, 7, 263.
- **Zheng, B. et al. (2019)** "CLL-1 is a selective target for acute myeloid leukemia." Scientific Reports, 9, 4110.

